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Also 

from the equation of state (Sec. III. B). Hence En can be elimi

nated between the equations and the equation for T becomes n 

Now all (Pn , Vn , Tn) reverberation states can be calculated if 

up and To are given. 

Using resistivity theory results (Sec. III.A.4), the 

resistivity change due to temperature rise is also calculated. 

Computations show that at 100 kbar the thermal resistivity change 

is 4% lower than for a single shock. The graph of shock iso-

thermal resistivity versus pressure is not strongly affected by 

the correction, but the amount of resistivity change attributed 

to defects generated by the shock is about 20% higher on the 

MRC curve and 4.5% higher on the W3N curve after the multiple 

shock calculation for the data points. 

2. Temperature Rise Due to Plastic Deformation 

Plastic deformation is an irreversible process. The 

entropy rise increases the thermal energy, which influences the 

temperature rise due to the shock wave. 

Although the shock transition is achieved by irrevers-

ibleprocesses, initial and final thermodynamic states are con-

sidered to be equilibrium states on the equation of state 

surface of the shocked substance. If entropy production can be 



expressed as a function of volume, thep temperature can be 

found from an integration of 

(8) 

along an equilibrium p~th (the Hugpniot curv,e) petween initial 

and final states. 

Accgrding to the theory of irreversible therm9~~amics, 

define a local entropy 9 (Xo'XI , ... ) witn functional depen

dence on local extensive parameters Xp'Xl , , .. identical to 

its dependence in equilibrium thermodynamics (Callen, 1960). 

Then 
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where the Fk are local ~ntensive parameterq (entropy representa

tion) having the sam? functional dependence on local extensive 

parameters as intensive p~ramet~~s in equilibrium thermodynamics 

do. 

In the shock transition there is entropy production due 

to plastic deformation ~d ~~e tg t~~ ~ydr9dypamic shock process 

itself (viscous dissipat~on) gS = Q..91 + dS2 where 

= 1. (4 T),( d s _ d T) d ,Sl = TV ~ s.de~ 
_ j J ' J T 3 ' x IJ. 

as in Eq. (5) and (6). An expression for dS2 can be found 

using the Rankine-Hugoniot reJ,ation 

1 -V) ~ ~ . (F
4 P~) dV dE - 2 dPxe Vl + 

where Vl and pI 
x are values £it the I1ugoniot elastic 

Locally, fo~ the hydrodyn?llic process 

dS2 = ~ dE + ~x dV 

limit. 

• 


